Schlagwortarchiv für: Best practice

Mit scikit-learn Modelle erstellen

Um Einsteiger:innen einen Überblick über die Möglichkeiten von scikit-learn zu geben, haben wir im kürzlichen erschienenen ix-Sonderheft „Künstliche Intelligenz“ einen Artikel zum Thema „Mit scikit-learn Modelle erstellen“ veröffentlicht.

Einführung in Unittesting mit Python für Data Scientists

Unittests können in Data-Science-Projekten sehr sinnvoll sein, um eine hohe Codequalität sicherzustellen. Um den Einstieg in das Unittesten mit Python für Data Scientists zu erleichtern, haben wir einen Artikel zu diesem Thema geschrieben, der auf Informatik Aktuell veröffentlicht wurde.

Effektive Code Reviews für Data-Science-Projekte

Code Reviews sind eine gängige Praxis in der Softwareentwicklung, doch sie sind auch in Data-Science-Projekten relevant und sinnvoll. Der Artikel beleuchtet die Gründe dafür und gibt Hinweise darauf, wie Code Reviews in Data-Science-Projekten effektiv gestaltet werden können.

Data Science Training für echte Projekte

Mit unserem Training “Data Science für den Arbeitsalltag” möchten wir Unternehmen dabei unterstützen, Wissenslücken in der praktischen Umsetzung von Machine Learning Projekten zu schließen und ein gemeinsames Teamverständnis zu schaffen.
Neben beliebig kombinierbaren Einzel-Modulen bieten wir dafür eine Beratung für Ihre individuelle Data Challenge an.

Tipps & Tricks bei der Entwicklung eines Dashboards mit Streamlit & Plotly

Wir haben mit Streamlit und plotly.express ein web-basiertes Dashboard für die Übersicht über CO2-Emissionen gebaut. Dieser Blogeintrag zeigt einige Tipps und Tricks, die wir bei der Implementierung und dem Deployment des Dashboards gelernt haben.

Professionelles Arbeiten mit Jupyter Notebooks/Lab

Materialien zum Vortrag Professionelles Arbeiten mit Jupyter Notebooks/Lab von Nico Kreiling