Schlagwortarchiv für: data science

Einblicke in die European Society of Human Genetics Konferenz 2024

Einblicke in die European Society of Human Genetics (ESHG) 2024 – eine beeindruckende, hybriden Veranstaltung, die Tausende von Besuchern aus aller Welt anlockte.

M3 2024

Auf der diesjährigen Minds Mastering Machines (M3) Konferenz in Köln standen neben den neuesten Trends im Bereich Machine Learning besonders Sprachmodelle (LLM), aber auch der AI Act, AI Fairness und automatische Datenintegration im Fokus. Wir waren mit zwei talks zu unseren Projekten beteiligt.

IT-Tage 2023

Erstmals durften wir bei den IT-Tagen 2023 im Dezember in Frankfurt dabei sein. Die Konferenz bietet einen vielfältigen Einblick in die IT-Welt, von Software-Architektur über Agile-Praktikten bis zum zu großen Sprachmodellen. Wir trugen mit zwei Vorträgen zu Unit-Testing und Personalisierung mit LLMs spannende Themen für Data Scientists bei.

data2day Logo

data2day 2023

Auf der data2day 2023 im Oktober in Karlsruhe wurden die neuesten Datenanalyse-Technologien anhand von Datenprojekten diskutiert. Neben Data Mesh und großen Sprachmodellen (LLMs) stellten Martin Danner und Jan Höllmer scieneers-Projekte mit Temporal Fusion Transformer (TFT) zu Prognose und Anomalie-Erkennung bei Iqony vor.

Optimize an AI Powered Recommendation Engine

scieneers, Intel Corporation, and Von Rundstedt joined forces to optimize an AI powered recommendation engine solution that leverages the Intel® AI Analytics Toolkit and 4th Generation Intel® Xeon® Scalable Processors. In this brief experience report we demonstrate how we managed to achieve up to 9.3X speedup when running on 4th Generation Intel® Xeon® Scalable Processors compared to the baseline configuration. This means that the solution can process more data faster, generate more accurate recommendations, and serve more users with lower latency and cost.

House containing multiple shops connected by an information line

LLMs und Cloud-Technologien zur Vernetzung von Onlineshops der Otto-Gruppe

Large Language Models (LLMs) sind wegen ihrer vielfältigen Anwendungen in aller Munde. Auch im E-Commerce Bereich ist diese Technologie sehr nützlich. Zusammen mit der data.works GmbH haben wir sogenannte Embedding-Modelle aus dem LLM-Bereich mit der Vertex AI Matching Engine in der Google Cloud für mehrere Onlineshops der Otto-Gruppe eingesetzt, um kundenspezifische Produktempfehlungen aus einem Shop auf viele andere Shops übertragen zu können. Und das, obwohl sich die Sortimente und Kataloge dieser Shops stark unterscheiden.

Drawing of a district heating plant

Wärmebedarf prognostizieren mit Temporal Fusion Transformern

Zusammen mit Iqony haben wir den Einsatz von Temporal Fusion Transformern zur Bedarfsprognose in der Fernwärme getestet. Durch Data Fusion können die Vorhersagen von mehreren Standorten in einem Modell vereint und vor allem die Vorhersagegenauigkeit von Standorten mit wenig Daten gesteigert werden. Die Quantisierung von Vorhersageunsicherheiten und die Interpretierbarkeit des Modells schaffen Vertrauen und unterstützen die Entscheidungsfindung.

Girl standing in front of a big shelf full of books

Moodle Chatbot – KI als persönlicher Uni-Dozent

Zusammen mit der RWTH Aachen haben wir einen Chatbot entwickelt, der einen nahtlosen Zugang zu Vorlesungsinhalten für Studierende und Mitarbeitende direkt in der Lernplattform Moodle ermöglicht. Somit können themenspezifische Fragen mit Inhalten aus einer Vorlesung beantwortet werden. Eine zusätzliche Quellenangabe erlaubt außerdem das schnelle Finden der relevanten Vorlesungsinhalte in den Unterlagen.

KI-basierte Textanalyse für die Energiewirtschaft

Künstliche Intelligenz (KI) erfährt durch ChatGPT derzeit enorme Aufmerksamkeit. Abseits vom Hype haben die aktuellsten Entwicklungen die Verarbeitung von Sprache und Texten auf ein neues Niveau gehoben. In diesem Artikel wollen wir Ihnen zeigen, was ChatGPT & Co. im Kontext der Energiewirtschaft wirklich leisten können, was das Neue daran ist und wie man diese Tools in der Praxis einsetzen kann.

Offshore windpark

Anomalieerkennung bei Windkraftanlagen mit Temporal Fusion Transformern für Iqony

Transformer-Architekturen haben sich als bahnbrechend im Bereich des Natural Language Processing erwiesen. Temporal Fusion Transformer nutzen diese Architektur für die Prognose von Zeitreihen und bieten dabei gegenüber klassischen Modellen Vorteile wie z.B. hohe Interpretierbarkeit und Data Fusion. Mit iqony hatten wir nun die Möglichkeit dieses Modell in der Praxis für die Anomalieerkennung bei Windkraftanlagen zu testen.