Einblicke in die European Society of Human Genetics Konferenz 2024
Einblicke in die European Society of Human Genetics (ESHG) 2024 – eine beeindruckende, hybriden Veranstaltung, die Tausende von Besuchern aus aller Welt anlockte.
Einblicke in die European Society of Human Genetics (ESHG) 2024 – eine beeindruckende, hybriden Veranstaltung, die Tausende von Besuchern aus aller Welt anlockte.
Auf der diesjährigen Minds Mastering Machines (M3) Konferenz in Köln standen neben den neuesten Trends im Bereich Machine Learning besonders Sprachmodelle (LLM), aber auch der AI Act, AI Fairness und automatische Datenintegration im Fokus. Wir waren mit zwei talks zu unseren Projekten beteiligt.
scieneers, Intel Corporation, and Von Rundstedt joined forces to optimize an AI powered recommendation engine solution that leverages the Intel® AI Analytics Toolkit and 4th Generation Intel® Xeon® Scalable Processors. In this brief experience report we demonstrate how we managed to achieve up to 9.3X speedup when running on 4th Generation Intel® Xeon® Scalable Processors compared to the baseline configuration. This means that the solution can process more data faster, generate more accurate recommendations, and serve more users with lower latency and cost.
Zusammen mit Iqony haben wir den Einsatz von Temporal Fusion Transformern zur Bedarfsprognose in der Fernwärme getestet. Durch Data Fusion können die Vorhersagen von mehreren Standorten in einem Modell vereint und vor allem die Vorhersagegenauigkeit von Standorten mit wenig Daten gesteigert werden. Die Quantisierung von Vorhersageunsicherheiten und die Interpretierbarkeit des Modells schaffen Vertrauen und unterstützen die Entscheidungsfindung.
Transformer-Architekturen haben sich als bahnbrechend im Bereich des Natural Language Processing erwiesen. Temporal Fusion Transformer nutzen diese Architektur für die Prognose von Zeitreihen und bieten dabei gegenüber klassischen Modellen Vorteile wie z.B. hohe Interpretierbarkeit und Data Fusion. Mit iqony hatten wir nun die Möglichkeit dieses Modell in der Praxis für die Anomalieerkennung bei Windkraftanlagen zu testen.
Um Einsteiger:innen einen Überblick über die Möglichkeiten von scikit-learn zu geben, haben wir im kürzlichen erschienenen ix-Sonderheft „Künstliche Intelligenz“ einen Artikel zum Thema „Mit scikit-learn Modelle erstellen“ veröffentlicht.
Unittests können in Data-Science-Projekten sehr sinnvoll sein, um eine hohe Codequalität sicherzustellen. Um den Einstieg in das Unittesten mit Python für Data Scientists zu erleichtern, haben wir einen Artikel zu diesem Thema geschrieben, der auf Informatik Aktuell veröffentlicht wurde.
Am Fallbeispiel der Wärmeprognose bei STEAG New Energies wird die Entwicklung und das Projektvorgehen nach SCRUM und CRISP-DM skizziert. Neben der detaillierten Beschreibung der einzelnen Schritte einer Entwicklungsiteration, liegt ein weiterer Fokus des Blog-Artikels auf dem im Einsatz befindlichen Technologie-Stack.
Code Reviews sind eine gängige Praxis in der Softwareentwicklung, doch sie sind auch in Data-Science-Projekten relevant und sinnvoll. Der Artikel beleuchtet die Gründe dafür und gibt Hinweise darauf, wie Code Reviews in Data-Science-Projekten effektiv gestaltet werden können.
Mit unserem Training “Data Science für den Arbeitsalltag” möchten wir Unternehmen dabei unterstützen, Wissenslücken in der praktischen Umsetzung von Machine Learning Projekten zu schließen und ein gemeinsames Teamverständnis zu schaffen.
Neben beliebig kombinierbaren Einzel-Modulen bieten wir dafür eine Beratung für Ihre individuelle Data Challenge an.